
Allicdata Part #: | IM02RUR56K-ND |
Manufacturer Part#: |
IM02RUR56K |
Price: | $ 0.00 |
Product Category: | Inductors, Coils, Chokes |
Manufacturer: | Vishay Dale |
Short Description: | IM-2 .56 10% R36 |
More Detail: | 560nH Unshielded Molded Inductor 545mA 500 mOhm Ma... |
DataSheet: | ![]() |
Quantity: | 1000 |
1 +: | 0.00000 |
Q @ Freq: | 30 @ 25MHz |
Height - Seated (Max): | -- |
Size / Dimension: | 0.095" Dia x 0.250" L (2.42mm x 6.35mm) |
Supplier Device Package: | Axial |
Package / Case: | Axial |
Mounting Type: | Through Hole |
Features: | -- |
Inductance Frequency - Test: | 25MHz |
Operating Temperature: | -55°C ~ 125°C |
Ratings: | -- |
Frequency - Self Resonant: | 300MHz |
Series: | IM |
DC Resistance (DCR): | 500 mOhm Max |
Shielding: | Unshielded |
Current - Saturation: | -- |
Current Rating: | 545mA |
Tolerance: | ±10% |
Inductance: | 560nH |
Material - Core: | Phenolic |
Type: | Molded |
Part Status: | Obsolete |
Packaging: | -- |
Due to market price fluctuations, if you need to purchase or consult the price. You can contact us or emial to us: sales@allicdata.com
Fixed Inductors
Fixed inductors are components which store energy in the form of a magnetic field such that a voltage can be induced by passing a current through them. IM02RUR56K is a type of fixed inductor which, due to its small size and high inductance, is becoming increasingly popular for use in power supply applications. This article will discuss the application field and working principle of IM02RUR56K.
Application Field
IM02RUR56K fixed inductors are primarily used in power supply applications, where their excellent inductance makes them ideal for providing the current smoothing and voltage regulation functions necessary for power management. They are also particularly useful in high-frequency applications due to their small size and relatively high inductance, making them suitable for use in devices such as notebook computers, mobile phones and other similar products which have tight space constraints. IM02RUR56K are also used in switch mode power supplies (SMPS), where their small size, high inductance and excellent high-frequency performance make them ideal for providing the necessary power management functions.
Working Principle
The working principle of IM02RUR56K fixed inductors is based on Faraday’s Law of Induction. When a current is passed through the inductor, it creates a magnetic field which induces a voltage across the inductor. This induced voltage is then used to control the current flow, which can be used for power management or voltage regulation, depending on the application. In addition, the magnetic field which is created by the current also stores energy, which can then be released when the current is reduced or stopped, allowing the inductor to act as a buffer and maintain a steady power supply even in fluctuating or variable environments.
The IM02RUR56K inductor is designed to have a wide operating temperature range and high power handling capabilities, making it suitable for use in a range of harsh environments. In addition, its low winding resistance also makes it more efficient than other inductors, resulting in less power loss and improved system performance.
Conclusion
IM02RUR56K is a type of fixed inductor which is becoming increasingly popular for use in power supply applications due to its small size and high inductance. Its working principle is based on Faraday’s Law of Induction and it is designed to have a wide operating temperature range and high power handling capabilities. IM02RUR56K is an ideal inductor for providing the current smoothing and voltage regulation functions necessary for power management, as well as for use in high-frequency applications such as notebook computers, mobile phones and other similar products.
The specific data is subject to PDF, and the above content is for reference
Part Number | Manufacturer | Price | Quantity | Description |
---|
IM02ER1R5K | Vishay Dale | 0.0 $ | 1000 | IM-2 1.5 10% ER E21.5H Un... |
IM02EV2R2K | Vishay Dale | 0.0 $ | 1000 | IM-2 2.2 10% EV E22.2H Un... |
IM02ST561K | Vishay Dale | 0.0 $ | 1000 | IM-2 560 10% RJ4560H Unsh... |
IM02BH1R8K | Vishay Dale | 0.0 $ | 1000 | IM-2 1.8 10% B081.8H Unsh... |
IM02BH3R3K | Vishay Dale | 0.0 $ | 1000 | IM-2 3.3 10% B083.3H Unsh... |
IM02EBR56K | Vishay Dale | 0.0 $ | 1000 | IM-2 .56 10% EB E2560nH U... |
IM02STR12K | Vishay Dale | 0.0 $ | 1000 | IM-2 .12 10% RJ4120nH Uns... |
IM02BH1R2J | Vishay Dale | 0.0 $ | 1000 | IM-2 1.2 5% B081.2H Unshi... |
IM02BH8R2K | Vishay Dale | 0.0 $ | 1000 | IM-2 8.2 10% B088.2H Unsh... |
IM02BHR68H | Vishay Dale | 0.0 $ | 1000 | IM-2 .68 3% B08680nH Unsh... |
IM02SH6R8F | Vishay Dale | 0.0 $ | 1000 | IM-2 6.8 1% RJ16.8H Unshi... |
IM02SHR47K | Vishay Dale | 0.0 $ | 1000 | IM-2 .47 10% RJ1470nH Uns... |
IM02ST2R4K | Vishay Dale | 0.0 $ | 1000 | IM-2 2.4 10% RJ42.4H Unsh... |
IM02BH180J | Vishay Dale | 0.0 $ | 1000 | IM-2 18 5% B0818H Unshiel... |
IM02KR100K | Vishay Dale | 0.0 $ | 1000 | IM-2 10 10% K1610H Unshie... |
IM02RU100G | Vishay Dale | 0.0 $ | 1000 | IM-2 10 2% R3610H Unshiel... |
IM02RU220F | Vishay Dale | 0.0 $ | 1000 | IM-2 22 1% R3622H Unshiel... |
IM02RUR68K | Vishay Dale | 0.0 $ | 1000 | IM-2 .68 10% R36680nH Uns... |
IM02SH680J | Vishay Dale | 0.0 $ | 1000 | IM-2 68 5% RJ168H Unshiel... |
IM02ST121K | Vishay Dale | 0.0 $ | 1000 | IM-2 120 10% RJ4120H Unsh... |
IM02BHR13J | Vishay Dale | 0.0 $ | 1000 | IM-2 .13 5% B08130nH Unsh... |
IM02BHR22H | Vishay Dale | 0.0 $ | 1000 | IM-2 .22 3% B08220nH Unsh... |
IM02EV470K | Vishay Dale | 0.0 $ | 1000 | IM-2 47 10% EV E247H Unsh... |
IM02ST1R0K | Vishay Dale | 0.0 $ | 1000 | IM-2 1 10% RJ41H Unshield... |
IM02ST3R3H | Vishay Dale | 0.0 $ | 1000 | IM-2 3.3 3% RJ43.3H Unshi... |
IM02BH681K | Vishay Dale | 0.0 $ | 1000 | IM-2 680 10% B08680H Unsh... |
IM02SH101J | Vishay Dale | 0.0 $ | 1000 | IM-2 100 5% RJ1100H Unshi... |
IM02BH220K | Vishay Dale | 0.0 $ | 1000 | IM-2 22 10% B0822H Unshie... |
IM02BH2R2F | Vishay Dale | 0.0 $ | 1000 | IM-2 2.2 1% B082.2H Unshi... |
IM02BH2R7K | Vishay Dale | 0.0 $ | 1000 | IM-2 2.7 10% B082.7H Unsh... |
IM02BHR47K | Vishay Dale | 0.0 $ | 1000 | IM-2 .47 10% B08470nH Uns... |
IM02ER2R7K | Vishay Dale | 0.0 $ | 1000 | IM-2 2.7 10% ER E22.7H Un... |
IM02ES1R5K | Vishay Dale | 0.0 $ | 1000 | IM-2 1.5 10% ES E21.5H Un... |
IM02KRR10K | Vishay Dale | 0.0 $ | 1000 | IM-2 .1 10% K16100nH Unsh... |
IM02EB1R0K | Vishay Dale | 0.0 $ | 1000 | FIXED IND 1UH 385MA 1 OHM... |
IM02BH2R2G | Vishay Dale | 0.0 $ | 1000 | IM-2 2.2 2% B082.2H Unshi... |
IM02RU470K | Vishay Dale | 0.0 $ | 1000 | IM-2 47 10% R3647H Unshie... |
IM02ST1R8J | Vishay Dale | 0.0 $ | 1000 | IM-2 1.8 5% RJ41.8H Unshi... |
IM02BHR12H | Vishay Dale | 0.0 $ | 1000 | IM-2 .12 3% B08120nH Unsh... |
IM02ER5R6K | Vishay Dale | 0.0 $ | 1000 | IM-2 5.6 10% ER E25.6H Un... |
FIXED IND 10UH 590MA 350 MOHM10H Unshiel...

FIXED IND 22NH 1.4A 70 MOHM SMD22nH Unsh...

FIXED IND 13NH 600MA SMD13nH Unshielded ...

FIXED IND 680UH 210MA 4.6 OHM680H Unshie...

FIXED IND 470UH 1.3A 280 MOHM TH470H Uns...

FIXED IND 8.2UH 165MA 2.2 OHM TH8.2H Uns...
