
Allicdata Part #: | IM06RFCSBHR33J40-ND |
Manufacturer Part#: |
IM06RFCSBHR33J40 |
Price: | $ 0.00 |
Product Category: | Inductors, Coils, Chokes |
Manufacturer: | Vishay Dale |
Short Description: | IM-6RFCS-40 .33 5% B08 |
More Detail: | 330nH Unshielded Molded Inductor 2.5A 50 mOhm Max ... |
DataSheet: | ![]() |
Quantity: | 1000 |
1 +: | 0.00000 |
Q @ Freq: | 70 @ 40MHz |
Height - Seated (Max): | -- |
Size / Dimension: | 0.190" Dia x 0.447" L (4.83mm x 11.35mm) |
Supplier Device Package: | Axial |
Package / Case: | Axial |
Mounting Type: | Through Hole |
Features: | -- |
Inductance Frequency - Test: | 40MHz |
Operating Temperature: | -55°C ~ 125°C |
Ratings: | -- |
Frequency - Self Resonant: | 352MHz |
Series: | IM-6-RFCS-40 |
DC Resistance (DCR): | 50 mOhm Max |
Shielding: | Unshielded |
Current - Saturation: | -- |
Current Rating: | 2.5A |
Tolerance: | ±5% |
Inductance: | 330nH |
Material - Core: | Phenolic |
Type: | Molded |
Part Status: | Obsolete |
Packaging: | -- |
Due to market price fluctuations, if you need to purchase or consult the price. You can contact us or emial to us: sales@allicdata.com
.Fixed inductors are electronic components that store electrical energy in an inductive field and release the energy when needed. The three basic components of a fixed inductor are a core, an inductor winding, and a capacitor. The core is typically made of iron, steel, or ferrite. The inductor winding is made of wire, and the capacitor is made of a dielectric, such as an electrolyte, oil, paper, or plastic.
The IM06RFCSBHR33J40 is a high-reliability fixed inductor with a wide range of applications. It features a low resistance core and low parasitic components, making it suitable for high-power use such as SMPS addressable lighting or H-bridge motor currents, where high power levels require low power losses and high frequency stability. Its high-temperature range design prevents core losses, allowing it to be used in extreme operating conditions. The inductor also features an overall shape which reduces radio frequency interference, and which is ideal for use in automotive, industrial, and consumer applications.
The primary working principle of this fixed inductor is that when a current passes through the inductor, a magnetic field is created, which induces a voltage across the winding. The amount of voltage induced is proportional to the rate of change of current. This voltage opposes the main driving current, and therefore the velocity of current changes in a manner described by Faraday’s law. The purpose of this is to obtain a desired level of reactance, which is a measure of the opposition to current flow. This reactance, combined with the inductor’s internal resistance, determines the amount of power required by the inductor and thus the efficiency with which energy is stored.
The IM06RFCSBHR33J40 is a high-reliability, high-temperature range fixed inductor that is ideal for a wide variety of applications. It is designed for high power use, and its low parasitic components make it suitable for operations such as SMPS addressable lighting or H-bridge motor currents. It also features an overall shape that reduces radio frequency interference, making it suitable for a variety of industrial, automotive, and consumer applications. This inductor’s working principle is based on Faraday’s law, whereby the voltage induced by a changing current opposes the main driving current, and in doing so provides a desired level of reactance.
The specific data is subject to PDF, and the above content is for reference
Part Number | Manufacturer | Price | Quantity | Description |
---|
IM06BHR22H | Vishay Dale | 0.0 $ | 1000 | IM-6 .22 3% B08220nH Unsh... |
IM06RFCSBH4R7K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 4.7 10% B084.... |
IM06RU150K | Vishay Dale | 0.0 $ | 1000 | IM-6 15 10% R3615H Unshie... |
IM06RU6R8K | Vishay Dale | 0.0 $ | 1000 | IM-6 6.8 10% R366.8H Unsh... |
IM06ST361H | Vishay Dale | 0.0 $ | 1000 | IM-6 360 3% RJ4360H Unshi... |
IM06BH470K | Vishay Dale | 0.0 $ | 1000 | IM-6 47 10% B0847H Unshie... |
IM06RR102K | Vishay Dale | 0.0 $ | 1000 | IM-6 1K 10% R161mH Unshie... |
IM06STR22K | Vishay Dale | 0.0 $ | 1000 | IM-6 .22 10% RJ4220nH Uns... |
IM06RB681J | Vishay Dale | 0.0 $ | 1000 | IM-6 680 5% RB6680H Unshi... |
IM06RFCSER100K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 10 10% ER E21... |
IM06RFCSRU3R3K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 3.3 10% R363.... |
IM06ST4R7K | Vishay Dale | 0.0 $ | 1000 | IM-6 4.7 10% RJ44.7H Unsh... |
IM06BH621J | Vishay Dale | 0.0 $ | 1000 | IM-6 620 5% B08620H Unshi... |
IM06SS8R2J | Vishay Dale | 0.0 $ | 1000 | IM-6 8.2 5% RJ58.2H Unshi... |
IM06ER6R8K | Vishay Dale | 0.0 $ | 1000 | IM-6 6.8 10% ER E26.8H Un... |
IM06KER47K | Vishay Dale | 0.0 $ | 1000 | IM-6 .47 10% K05470nH Uns... |
IM06RFCSBHR27J40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 .27 5% B08270... |
IM06RFCSEB101K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 100 10% EB E2... |
IM06SS102K | Vishay Dale | 0.0 $ | 1000 | IM-6 1K 10% RJ51mH Unshie... |
IM06RFCSBH3R3K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 3.3 10% B083.... |
IM06RFCSER6R8K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 6.8 10% ER E2... |
IM06BH471H | Vishay Dale | 0.0 $ | 1000 | IM-6 470 3% B08470H Unshi... |
IM06RU471J | Vishay Dale | 0.0 $ | 1000 | IM-6 470 5% R36470H Unshi... |
IM06RFCSEB220K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 22 10% EB E22... |
IM06BH2R2K | Vishay Dale | 0.0 $ | 1000 | IM-6 2.2 10% B082.2H Unsh... |
IM06RFCSBHR27K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 .27 10% B0827... |
IM06RFCSSHR22K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 .22 10% RJ122... |
IM06RU2R2J | Vishay Dale | 0.0 $ | 1000 | IM-6 2.2 5% R362.2H Unshi... |
IM06BHR15K | Vishay Dale | 0.0 $ | 1000 | IM-6 .15 10% B08150nH Uns... |
IM06RFCSBH1R8J40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 1.8 5% B081.8... |
IM06RFCSBH2R7K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 2.7 10% B082.... |
IM06RFCSBHR56K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 .56 10% B0856... |
IM06RFCSRUR47K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 .47 10% R3647... |
IM06EB561J | Vishay Dale | 0.0 $ | 1000 | IM-6 560 5% EB E2560H Uns... |
IM06RUR10K | Vishay Dale | 0.0 $ | 1000 | IM-6 .1 10% R36100nH Unsh... |
IM06ST471K | Vishay Dale | 0.0 $ | 1000 | IM-6 470 10% RJ4470H Unsh... |
IM06SK102J | Vishay Dale | 0.0 $ | 1000 | IM-6 1K 5% RJ31mH Unshiel... |
IM06EB621J | Vishay Dale | 0.0 $ | 1000 | IM-6 620 5% EB E2620H Uns... |
IM06RFCSBH6R8K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 6.8 10% B086.... |
IM06SS100K | Vishay Dale | 0.0 $ | 1000 | IM-6 10 10% RJ510H Unshie... |
FIXED IND 10UH 590MA 350 MOHM10H Unshiel...

FIXED IND 22NH 1.4A 70 MOHM SMD22nH Unsh...

FIXED IND 13NH 600MA SMD13nH Unshielded ...

FIXED IND 680UH 210MA 4.6 OHM680H Unshie...

FIXED IND 470UH 1.3A 280 MOHM TH470H Uns...

FIXED IND 8.2UH 165MA 2.2 OHM TH8.2H Uns...
