
Allicdata Part #: | IM06RFCSEB1R0K40-ND |
Manufacturer Part#: |
IM06RFCSEB1R0K40 |
Price: | $ 0.00 |
Product Category: | Inductors, Coils, Chokes |
Manufacturer: | Vishay Dale |
Short Description: | IM-6RFCS-40 1 10% EB E2 |
More Detail: | 1µH Unshielded Molded Inductor 1.1A 240 mOhm Max A... |
DataSheet: | ![]() |
Quantity: | 1000 |
1 +: | 0.00000 |
Q @ Freq: | 50 @ 20MHz |
Height - Seated (Max): | -- |
Size / Dimension: | 0.190" Dia x 0.447" L (4.83mm x 11.35mm) |
Supplier Device Package: | Axial |
Package / Case: | Axial |
Mounting Type: | Through Hole |
Features: | -- |
Inductance Frequency - Test: | 20MHz |
Operating Temperature: | -55°C ~ 125°C |
Ratings: | -- |
Frequency - Self Resonant: | 200MHz |
Series: | IM-6-RFCS-40 |
DC Resistance (DCR): | 240 mOhm Max |
Shielding: | Unshielded |
Current - Saturation: | -- |
Current Rating: | 1.1A |
Tolerance: | ±10% |
Inductance: | 1µH |
Material - Core: | Phenolic |
Type: | Molded |
Part Status: | Obsolete |
Packaging: | -- |
Due to market price fluctuations, if you need to purchase or consult the price. You can contact us or emial to us: sales@allicdata.com
Fixed inductors are an important component in electrical circuits, and the IM06RFCSEB1R0K40 is an example. It is commonly used in applications such as digital audio products, disk drives, power supplies, motor control systems, radio communication systems, electronic control circuits and signal processing circuits.
The IM06RFCSEB1R0K40 comes in a small package, making it ideal for space-saving purposes. It is designed to provide efficient inductance in a wide range of frequencies. This device has the characteristics of small size, high Q and high inductance. It also has excellent noise resistance and transient response.
The IM06RFCSEB1R0K40 is manufactured with three types of magnetic cores: ferrite core, air core and permalloy core. These cores provide different levels of inductance, which can be adjusted according to the application requirements. The powder core is often used in high frequency applications due to its low loss characteristics. The air core is suitable for high current applications as it has low inductance and a high saturation level.
The IM06RFCSEB1R0K40 provides a very stable inductance over a wide range of frequencies. The lower the frequency, the higher the inductance of the device. The type of core that is selected determines the device\'s inductance values at different frequencies. For example, ferrite cores have the highest inductance at low frequencies. Permalloy cores have the highest inductance at high frequencies.
The IM06RFCSEB1R0K40 also has a good range of rated current and voltage, making it suitable for a variety of circuit applications. The rated current ranges from 0.5A to 1.2A, and the rated voltage is between 6V and 25V.
The working principle of the IM06RFCSEB1R0K40 is relatively simple. When electricity passes through the device, an alternating magnetic field is generated, which produces an inductance in the device. At the same time, the device\'s self-inductance and parasitic capacitance work together to cause a change in phase and magnitude. This phase and magnitude change is known as the device\'s transfer function.
The transfer function is used to determine the performance of the device in various applications. The output characteristics of the device can be adjusted by combining the transfer function with a resistor or capacitor. This allows the device to deliver a wide range of inductance values at different frequencies.
The IM06RFCSEB1R0K40 is an ideal inductor for a variety of applications, especially in digital audio products, disk drives, power supplies, motor control systems, radio communication systems, electronic control circuits and signal processing circuits. Its high Q and wide frequency range make it suitable for a variety of circuit applications. This device is also small in size, making it a perfect choice for space-saving purposes.
The specific data is subject to PDF, and the above content is for reference
Part Number | Manufacturer | Price | Quantity | Description |
---|
IM06BHR22H | Vishay Dale | 0.0 $ | 1000 | IM-6 .22 3% B08220nH Unsh... |
IM06RFCSBH4R7K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 4.7 10% B084.... |
IM06RU150K | Vishay Dale | 0.0 $ | 1000 | IM-6 15 10% R3615H Unshie... |
IM06RU6R8K | Vishay Dale | 0.0 $ | 1000 | IM-6 6.8 10% R366.8H Unsh... |
IM06ST361H | Vishay Dale | 0.0 $ | 1000 | IM-6 360 3% RJ4360H Unshi... |
IM06BH470K | Vishay Dale | 0.0 $ | 1000 | IM-6 47 10% B0847H Unshie... |
IM06RR102K | Vishay Dale | 0.0 $ | 1000 | IM-6 1K 10% R161mH Unshie... |
IM06STR22K | Vishay Dale | 0.0 $ | 1000 | IM-6 .22 10% RJ4220nH Uns... |
IM06RB681J | Vishay Dale | 0.0 $ | 1000 | IM-6 680 5% RB6680H Unshi... |
IM06RFCSER100K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 10 10% ER E21... |
IM06RFCSRU3R3K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 3.3 10% R363.... |
IM06ST4R7K | Vishay Dale | 0.0 $ | 1000 | IM-6 4.7 10% RJ44.7H Unsh... |
IM06BH621J | Vishay Dale | 0.0 $ | 1000 | IM-6 620 5% B08620H Unshi... |
IM06SS8R2J | Vishay Dale | 0.0 $ | 1000 | IM-6 8.2 5% RJ58.2H Unshi... |
IM06ER6R8K | Vishay Dale | 0.0 $ | 1000 | IM-6 6.8 10% ER E26.8H Un... |
IM06KER47K | Vishay Dale | 0.0 $ | 1000 | IM-6 .47 10% K05470nH Uns... |
IM06RFCSBHR27J40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 .27 5% B08270... |
IM06RFCSEB101K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 100 10% EB E2... |
IM06SS102K | Vishay Dale | 0.0 $ | 1000 | IM-6 1K 10% RJ51mH Unshie... |
IM06RFCSBH3R3K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 3.3 10% B083.... |
IM06RFCSER6R8K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 6.8 10% ER E2... |
IM06BH471H | Vishay Dale | 0.0 $ | 1000 | IM-6 470 3% B08470H Unshi... |
IM06RU471J | Vishay Dale | 0.0 $ | 1000 | IM-6 470 5% R36470H Unshi... |
IM06RFCSEB220K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 22 10% EB E22... |
IM06BH2R2K | Vishay Dale | 0.0 $ | 1000 | IM-6 2.2 10% B082.2H Unsh... |
IM06RFCSBHR27K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 .27 10% B0827... |
IM06RFCSSHR22K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 .22 10% RJ122... |
IM06RU2R2J | Vishay Dale | 0.0 $ | 1000 | IM-6 2.2 5% R362.2H Unshi... |
IM06BHR15K | Vishay Dale | 0.0 $ | 1000 | IM-6 .15 10% B08150nH Uns... |
IM06RFCSBH1R8J40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 1.8 5% B081.8... |
IM06RFCSBH2R7K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 2.7 10% B082.... |
IM06RFCSBHR56K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 .56 10% B0856... |
IM06RFCSRUR47K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 .47 10% R3647... |
IM06EB561J | Vishay Dale | 0.0 $ | 1000 | IM-6 560 5% EB E2560H Uns... |
IM06RUR10K | Vishay Dale | 0.0 $ | 1000 | IM-6 .1 10% R36100nH Unsh... |
IM06ST471K | Vishay Dale | 0.0 $ | 1000 | IM-6 470 10% RJ4470H Unsh... |
IM06SK102J | Vishay Dale | 0.0 $ | 1000 | IM-6 1K 5% RJ31mH Unshiel... |
IM06EB621J | Vishay Dale | 0.0 $ | 1000 | IM-6 620 5% EB E2620H Uns... |
IM06RFCSBH6R8K40 | Vishay Dale | 0.0 $ | 1000 | IM-6RFCS-40 6.8 10% B086.... |
IM06SS100K | Vishay Dale | 0.0 $ | 1000 | IM-6 10 10% RJ510H Unshie... |
FIXED IND 10UH 590MA 350 MOHM10H Unshiel...

FIXED IND 22NH 1.4A 70 MOHM SMD22nH Unsh...

FIXED IND 13NH 600MA SMD13nH Unshielded ...

FIXED IND 680UH 210MA 4.6 OHM680H Unshie...

FIXED IND 470UH 1.3A 280 MOHM TH470H Uns...

FIXED IND 8.2UH 165MA 2.2 OHM TH8.2H Uns...
