
Allicdata Part #: | IMS02ST1R0K-ND |
Manufacturer Part#: |
IMS02ST1R0K |
Price: | $ 0.00 |
Product Category: | Inductors, Coils, Chokes |
Manufacturer: | Vishay Dale |
Short Description: | IMS-2 1 10% RJ4 |
More Detail: | 1µH Shielded Molded Inductor 385mA 300 mOhm Max Ax... |
DataSheet: | ![]() |
Quantity: | 1000 |
1 +: | 0.00000 |
Q @ Freq: | 37 @ 25MHz |
Height - Seated (Max): | -- |
Size / Dimension: | 0.095" Dia x 0.250" L (2.41mm x 6.35mm) |
Supplier Device Package: | Axial |
Package / Case: | Axial |
Mounting Type: | Through Hole |
Features: | -- |
Inductance Frequency - Test: | 25MHz |
Operating Temperature: | -55°C ~ 105°C |
Ratings: | -- |
Frequency - Self Resonant: | 150MHz |
Series: | IMS-2 |
DC Resistance (DCR): | 300 mOhm Max |
Shielding: | Shielded |
Current - Saturation: | -- |
Current Rating: | 385mA |
Tolerance: | ±10% |
Inductance: | 1µH |
Material - Core: | Iron |
Type: | Molded |
Part Status: | Obsolete |
Packaging: | -- |
Due to market price fluctuations, if you need to purchase or consult the price. You can contact us or emial to us: sales@allicdata.com
Fixed inductors are components designed to produce inductance. An IMS02ST1R0K fixed inductor component is a surface mount inductor that can be installed on a printed circuit board. The inductor has a reliable surface mount construction and has a height of only 1.2mm. This inductor is suitable for a wide range of applications and has an impressive power dissipation of 100mW.
Application Field
The IMS02ST1R0K has a wide range of applications. It is used in portable computers, modems, and cellular phones in order to facilitate the function of the circuits. It can also be used in DC-DC converters to provide protection against power fluctuations, as well as power smoothing and decoupling. It is especially useful for consumer electronics applications and is often used in automotive, medical, and consumer products.
Working Principle
The working principle of the IMS02ST1R0K is based on Faraday\'s law of induction. According to this law, a current through a conductor will create a magnetic field which in turn will induce a voltage in a nearby conductor. This means that when an electric current passes through an inductor, an electromotive force is generated. The strength of this force will depend on the amount of current passing through the conductor. For example, if more current is running through the inductor more flux will be created, and therefore more voltage will be generated as well.
The IMS02ST1R0K also works on the principle of mutual inductance. Mutual inductance is the effect of one coil inducing a voltage in another coil due to the presence of an external magnetic field. For example, if a current passes through one coil, it will create a magnetic field that will induce a voltage in the other coil. This means that the two coils are interacting with each other and are able to exchange energy.
The IMS02ST1R0K is also able to provide protection against short circuits. This is because when a short is detected, the inductor will absorb some of the energy. This will help to protect the circuit from damage and provide reliable performance. It also helps to prevent the circuit from drawing too much current and overloading the system.
Conclusion
The IMS02ST1R0K fixed inductor is a small and efficient component that has a wide range of applications. The inductor is based on Faraday\'s law of induction and mutual inductance principles. It is able to absorb energy from short circuits, protecting the circuit from damage, and provide reliable performance. This makes the IMS02ST1R0K an ideal component for portable computers, modems, and cellular phones, among other consumer electronics products.
The specific data is subject to PDF, and the above content is for reference
Part Number | Manufacturer | Price | Quantity | Description |
---|
IMS05EBR10K | Vishay Dale | 0.0 $ | 1000 | FIXED IND 100NH 1.79A 25 ... |
IMS02BH2R2K | Vishay Dale | 0.0 $ | 1000 | IMS-2 2.2 10% B082.2H Shi... |
IMS02SH6R8K | Vishay Dale | 0.0 $ | 1000 | IMS-2 6.8 10% RJ16.8H Shi... |
IMS02SHR22K | Vishay Dale | 0.0 $ | 1000 | IMS-2 .22 10% RJ1220nH Sh... |
IMS02SHR15K | Vishay Dale | 0.0 $ | 1000 | IMS-2 .15 10% RJ1150nH Sh... |
IMS05BH1R5J | Vishay Dale | 0.0 $ | 1000 | IMS-5 1.5 5% B081.5H Shie... |
IMS05ST1R8K | Vishay Dale | 0.0 $ | 1000 | IMS-5 1.8 10% RJ41.8H Shi... |
IMS05WDBH152J40 | Vishay Dale | 0.0 $ | 1000 | IMS-5WD-40 1.5K 5% B081.5... |
IMS05WDRU102K40 | Vishay Dale | 0.0 $ | 1000 | IMS-5WD-40 1K 10% R361mH ... |
IMS02EB2R2K | Vishay Dale | 0.0 $ | 1000 | IMS-2 2.2 10% EB E22.2H S... |
IMS02EB6R8K | Vishay Dale | 0.0 $ | 1000 | IMS-2 6.8 10% EB E36.8H S... |
IMS02WWDBH1R5K40 | Vishay Dale | 0.0 $ | 1000 | IMS-2WWD-40 1.5 10% B081.... |
IMS05BH150K | Vishay Dale | 0.0 $ | 1000 | IMS-5 15 10% B0815H Shiel... |
IMS05EB392K | Vishay Dale | 0.0 $ | 1000 | IMS-5 3.9K 10% EB E23.9mH... |
IMS05SH101J | Vishay Dale | 0.0 $ | 1000 | IMS-5 100 5% RJ1100H Shie... |
IMS05RU3R9K | Vishay Dale | 0.0 $ | 1000 | IMS-5 3.9 10% R363.9H Shi... |
IMS05WDBH471K40 | Vishay Dale | 0.0 $ | 1000 | IMS-5WD-40 470 10% B08470... |
IMS05WDRU151J40 | Vishay Dale | 0.0 $ | 1000 | IMS-5WD-40 150 5% R36150H... |
IMS02BHR56K | Vishay Dale | 0.0 $ | 1000 | IMS-2 .56 10% B08560nH Sh... |
IMS02WWDEB100K40 | Vishay Dale | 0.0 $ | 1000 | IMS-2WWD-40 10 10% EB E21... |
IMS02WWDM9R18K40 | Vishay Dale | 0.0 $ | 1000 | IMS-2WWD-40 .18 10% M2918... |
IMS05BH120K | Vishay Dale | 0.0 $ | 1000 | IMS-5 12 10% B0812H Shiel... |
IMS05BH390K | Vishay Dale | 0.0 $ | 1000 | IMS-5 39 10% B0839H Shiel... |
IMS05RUR15J | Vishay Dale | 0.0 $ | 1000 | IMS-5 .15 5% R36150nH Shi... |
IMS05SH561K | Vishay Dale | 0.0 $ | 1000 | IMS-5 560 10% RJ1560H Shi... |
IMS05ST3R3K | Vishay Dale | 0.0 $ | 1000 | IMS-5 3.3 10% RJ43.3H Shi... |
IMS05WDEBR22K40 | Vishay Dale | 0.0 $ | 1000 | IMS-5WD-40 .22 10% EB E22... |
IMS05WDSH272K40 | Vishay Dale | 0.0 $ | 1000 | IMS-5WD-40 2.7K 10% RJ12.... |
IMS02SH1R8J | Vishay Dale | 0.0 $ | 1000 | IMS-2 1.8 5% RJ11.8H Shie... |
IMS02STR15K | Vishay Dale | 0.0 $ | 1000 | IMS-2 .15 10% RJ4150nH Sh... |
IMS05BH1R8K | Vishay Dale | 0.0 $ | 1000 | IMS-5 1.8 10% B081.8H Shi... |
IMS05BH330K | Vishay Dale | 0.0 $ | 1000 | IMS-5 33 10% B0833H Shiel... |
IMS05BH682J | Vishay Dale | 0.0 $ | 1000 | IMS-5 6.8K 5% B086.8mH Sh... |
IMS05SH330K | Vishay Dale | 0.0 $ | 1000 | IMS-5 33 10% RJ133H Shiel... |
IMS05WDBH221J40 | Vishay Dale | 0.0 $ | 1000 | IMS-5WD-40 220 5% B08220H... |
IMS05WDST470K40 | Vishay Dale | 0.0 $ | 1000 | IMS-5WD-40 47 10% RJ447H ... |
IMS05EB2R2K | Vishay Dale | 0.0 $ | 1000 | FIXED IND 2.2UH 650MA 190... |
IMS02SH270J | Vishay Dale | 0.0 $ | 1000 | IMS-2 27 5% RJ127H Shield... |
IMS02ST1R5K | Vishay Dale | 0.0 $ | 1000 | IMS-2 1.5 10% RJ41.5H Shi... |
IMS02WWDBH271K40 | Vishay Dale | 0.0 $ | 1000 | IMS-2WWD-40 270 10% B0827... |
FIXED IND 10UH 590MA 350 MOHM10H Unshiel...

FIXED IND 22NH 1.4A 70 MOHM SMD22nH Unsh...

FIXED IND 13NH 600MA SMD13nH Unshielded ...

FIXED IND 680UH 210MA 4.6 OHM680H Unshie...

FIXED IND 470UH 1.3A 280 MOHM TH470H Uns...

FIXED IND 8.2UH 165MA 2.2 OHM TH8.2H Uns...
