
Allicdata Part #: | IRF03ST680K-ND |
Manufacturer Part#: |
IRF03ST680K |
Price: | $ 0.00 |
Product Category: | Inductors, Coils, Chokes |
Manufacturer: | Vishay Dale |
Short Description: | IRF-3 68 10% RJ4 |
More Detail: | 68µH Unshielded Inductor 305mA 1.47 Ohm Max Axial |
DataSheet: | ![]() |
Quantity: | 1000 |
1 +: | 0.00000 |
Q @ Freq: | 40 @ 2.5MHz |
Height - Seated (Max): | -- |
Size / Dimension: | 0.170" Dia x 0.385" L (4.32mm x 9.78mm) |
Supplier Device Package: | Axial |
Package / Case: | Axial |
Mounting Type: | Through Hole |
Features: | -- |
Inductance Frequency - Test: | 2.5MHz |
Operating Temperature: | -55°C ~ 105°C |
Ratings: | -- |
Frequency - Self Resonant: | 11MHz |
Series: | IRF |
DC Resistance (DCR): | 1.47 Ohm Max |
Shielding: | Unshielded |
Current - Saturation: | -- |
Current Rating: | 305mA |
Tolerance: | ±10% |
Inductance: | 68µH |
Material - Core: | Ferrite |
Type: | -- |
Part Status: | Obsolete |
Packaging: | -- |
Due to market price fluctuations, if you need to purchase or consult the price. You can contact us or emial to us: sales@allicdata.com
Fixed inductors are electrical components made of conductive wires and core materials that hold and help control the amount of current flowing in an electrical circuit. The core material and number of turns of wire determine the inductance. Fixed inductors are used in a variety of different applications. One of the most popular fixed inductors in use today is the IRF03ST680K. Used in a broad range of automotive, industrial, telecommunications, and consumer electronics applications, this inductor is designed for reliable operation in a range of conditions.
Overview of the IRF03ST680K
The IRF03ST680K is a Surface Mounted Technology (SMT) inductor. Based on a shielded planar construction, this inductor features a shielded ferrite core. It has class A characteristics, with a maximum DC current rating of 4.15A and a saturation current rating of 6.7A. With a self-resonance frequency of 3.7MHz, this inductor can handle ripple currents in the kHz range, making it ideal for filtering both low- and high-frequency noise from in circuits and down the power trace.
Applications of the IRF03ST680K
The versatility of the IRF03ST680K makes it suitable for use in a wide variety of applications. With its high-impedance characteristics, low-impedance headphones, cellular phones, and portable audio amplifiers are common uses. It is also an ideal electromagnetic interference (EMI) filter for electronics systems, as it can reduce high-frequency noise on the power trace. These inductors also used in motor control and power regulation circuits, high-frequency switching regulators, boost converters, and dc-dc converters.
Working Principle of the IRF03ST680K
The IRF03ST680K works by controlling the flow of current through a circuit. The core material holds and regulates the flow of current, while the number of turns affects the effect of the inductor. The self-resonance frequency determines how ripple current is handled—a higher frequency means current is passed better. When using the inductor in a filter circuit, the higher the current, the lower-frequency noise can be filtered out.
Conclusion
The IRF03ST680K is a popular and versatile fixed inductor. Different applications require different inductors, but this inductor is perfect for EMI filters, headphones, motor control, and power regulation circuits. With its low-impedance characteristics, it is also ideal for low-noise audio applications. Its shielded ferrite core and class-A characteristics make it an ideal choice for a variety of applications.
The specific data is subject to PDF, and the above content is for reference
Part Number | Manufacturer | Price | Quantity | Description |
---|
IRF01SH5R6K | Vishay Dale | 0.0 $ | 1000 | IRF-1 5.6 10% RJ15.6H Uns... |
IRF01ST330K | Vishay Dale | 0.0 $ | 1000 | IRF-1 33 10% RJ433H Unshi... |
IRF03BH3R3K | Vishay Dale | 0.0 $ | 1000 | IRF-3 3.3 10% B083.3H Uns... |
IRF01BH681J | Vishay Dale | 0.0 $ | 1000 | IRF-1 680 5% B08680H Unsh... |
IRF03RU101K | Vishay Dale | 0.0 $ | 1000 | IRF-3 100 10% R36100H Uns... |
IRF03ST102K | Vishay Dale | 0.0 $ | 1000 | IRF-3 1K 10% RJ41mH Unshi... |
IRF03EV3R3K | Vishay Dale | 0.0 $ | 1000 | IRF-3 3.3 10% EV E23.3H U... |
IRF01ESR10K | Vishay Dale | 0.0 $ | 1000 | IRF-1 .1 10% ES E2100nH U... |
IRF01SH1R5K | Vishay Dale | 0.0 $ | 1000 | IRF-1 1.5 10% RJ11.5H Uns... |
IRF01ST102J | Vishay Dale | 0.0 $ | 1000 | IRF-1 1K 5% RJ41mH Unshie... |
IRF03BH1R0K | Vishay Dale | 0.0 $ | 1000 | IRF-3 1 10% B081H Unshiel... |
IRF03RU331K | Vishay Dale | 0.0 $ | 1000 | IRF-3 330 10% R36330H Uns... |
IRF03SH270K | Vishay Dale | 0.0 $ | 1000 | IRF-3 27 10% RJ127H Unshi... |
IRF03ST470J | Vishay Dale | 0.0 $ | 1000 | IRF-3 47 5% RJ447H Unshie... |
IRF03RU560K | Vishay Dale | 0.0 $ | 1000 | IRF-3 56 10% R3656H Unshi... |
IRF01ST101K | Vishay Dale | 0.0 $ | 1000 | IRF-1 100 10% RJ4100H Uns... |
IRF03BH6R8K | Vishay Dale | 0.0 $ | 1000 | IRF-3 6.8 10% B086.8H Uns... |
IRF03ER8R2K | Vishay Dale | 0.0 $ | 1000 | IRF-3 8.2 10% ER E28.2H U... |
IRF03SH470K | Vishay Dale | 0.0 $ | 1000 | IRF-3 47 10% RJ147H Unshi... |
IRF03SHR22K | Vishay Dale | 0.0 $ | 1000 | IRF-3 .22 10% RJ1220nH Un... |
IRF01RU181K | Vishay Dale | 0.0 $ | 1000 | IRF-1 180 10% R36180H Uns... |
IRF03ER100K | Vishay Dale | 0.0 $ | 1000 | IRF-3 10 10% ER E210H Uns... |
IRF01BH220J | Vishay Dale | 0.0 $ | 1000 | IRF-1 22 5% B0822H Unshie... |
IRF01BH560K | Vishay Dale | 0.0 $ | 1000 | IRF-1 56 10% B0856H Unshi... |
IRF03RU390K | Vishay Dale | 0.0 $ | 1000 | IRF-3 39 10% R3639H Unshi... |
IRF01BH150K | Vishay Dale | 0.0 $ | 1000 | IRF-1 15 10% B0815H Unshi... |
IRF03EB470K | Vishay Dale | 0.0 $ | 1000 | IRF-3 47 10% EB E247H Uns... |
IRF03SH390K | Vishay Dale | 0.0 $ | 1000 | IRF-3 39 10% RJ139H Unshi... |
IRF01RU220K | Vishay Dale | 0.0 $ | 1000 | IRF-1 22 10% R3622H Unshi... |
IRF03ER1R2K | Vishay Dale | 0.0 $ | 1000 | IRF-3 1.2 10% ER E21.2H U... |
IRF03SH102J | Vishay Dale | 0.0 $ | 1000 | IRF-3 1K 5% RJ11mH Unshie... |
IRF03ST4R7K | Vishay Dale | 0.0 $ | 1000 | IRF-3 4.7 10% RJ44.7H Uns... |
IRF01BH3R9K | Vishay Dale | 0.0 $ | 1000 | IRF-1 3.9 10% B083.9H Uns... |
IRF01BH5R6K | Vishay Dale | 0.0 $ | 1000 | IRF-1 5.6 10% B085.6H Uns... |
IRF01BH6R8K | Vishay Dale | 0.0 $ | 1000 | IRF-1 6.8 10% B086.8H Uns... |
IRF01ST220K | Vishay Dale | 0.0 $ | 1000 | IRF-1 22 10% RJ422H Unshi... |
IRF01EB220K | Vishay Dale | 0.0 $ | 1000 | IRF-1 22 10% EB E222H Uns... |
IRF01EBR10K | Vishay Dale | 0.0 $ | 1000 | IRF-1 .1 10% EB E2100nH U... |
IRF03BH100J | Vishay Dale | 0.0 $ | 1000 | IRF-3 10 5% B0810H Unshie... |
IRF03RU220K | Vishay Dale | 0.0 $ | 1000 | IRF-3 22 10% R3622H Unshi... |
FIXED IND 10UH 590MA 350 MOHM10H Unshiel...

FIXED IND 22NH 1.4A 70 MOHM SMD22nH Unsh...

FIXED IND 13NH 600MA SMD13nH Unshielded ...

FIXED IND 680UH 210MA 4.6 OHM680H Unshie...

FIXED IND 470UH 1.3A 280 MOHM TH470H Uns...

FIXED IND 8.2UH 165MA 2.2 OHM TH8.2H Uns...
