
Allicdata Part #: | RHM1366TR-ND |
Manufacturer Part#: |
MNR04MRAPJ821 |
Price: | $ 0.00 |
Product Category: | Resistors |
Manufacturer: | ROHM Semiconductor |
Short Description: | RES ARRAY 4 RES 820 OHM 0804 |
More Detail: | 820 Ohm ±5% 62.5mW Power Per Element Isolated 4 Re... |
DataSheet: | ![]() |
Quantity: | 1000 |
1 +: | 0.00000 |
Number of Pins: | 8 |
Height - Seated (Max): | 0.020" (0.50mm) |
Size / Dimension: | 0.079" L x 0.039" W (2.00mm x 1.00mm) |
Supplier Device Package: | -- |
Package / Case: | 0804, Convex, Long Side Terminals |
Mounting Type: | Surface Mount |
Applications: | -- |
Operating Temperature: | -55°C ~ 155°C |
Temperature Coefficient: | ±200ppm/°C |
Power Per Element: | 62.5mW |
Series: | MNR |
Resistor-Ratio-Drift: | -- |
Resistor Matching Ratio: | -- |
Number of Resistors: | 4 |
Tolerance: | ±5% |
Resistance (Ohms): | 820 |
Circuit Type: | Isolated |
Part Status: | Discontinued at Digi-Key |
Packaging: | Tape & Reel (TR) |
Due to market price fluctuations, if you need to purchase or consult the price. You can contact us or emial to us: sales@allicdata.com
Resistor Networks, Arrays provide a wide range of application fields. One of them is MNR04MRAPJ821, a resister network/array that works heavily on its principle of connecting components which are designed to control current, voltage, and power in electric circuits and electronic systems. The key component is the resistor. It works by reducing the flow of electric current in a circuit in order to control its voltage and power.
MNR04MRAPJ821 works on the principle of connecting components. It mainly consists of four individual resistors connected to each other in order to form an array, and its basic construction is like this: There is a differential resistor array which has two resistors connected in series. They are connected in a way that they form two separate circuits, one of which is connected to the ground and the other connected to the load. Then, two further resistors are connected between those two circuits in order to ensure the balanced resistance. And the last resistor in the array acts as a current limiter.
This four-resistor array works by controlling the output voltage and current by controlling the resistance between each other. It does this by adjusting their individual resistances. When the four resistors are connected, the total resistance is the sum of the individual resistances. By adjusting the individual resistors, the total resistance can be changed, with the output voltage and current altered correspondingly.
MNR04MRAPJ821 has some distinct advantages over other networks, such as its ability to be used in both AC and DC circuits, and its excellent repeatability in addition to providing a wide range of output voltages and currents. Additionally, it can be used in a large variety of applications, such as lighting control, motor control and instrumentation.
The applications of MNR04MRAPJ821 are so versatile that it can be used in almost any circuit, such as power supply, signal processing, circuit protection, and many other electronic applications. With its wide range of output voltages and currents, MNR04MRAPJ821 can also can be used for various types of display devices, such as LCDs. This makes it an invaluable tool for many industrial and commercial applications.
In conclusion, MNR04MRAPJ821 is a versatile resistor network/array with a wide range of applications and excellent repeatability. It works on the principle of controlling the output voltage and current by controlling the resistance between each other. Thanks to its flexibility, MNR04MRAPJ821 can be used in many types of circuits with a wide range of output voltages and currents, and can be used for a variety of display devices. This makes it an invaluable tool for many industrial and commercial applications.
The specific data is subject to PDF, and the above content is for reference
Part Number | Manufacturer | Price | Quantity | Description |
---|
MNR04M0ABJ122 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 1.2K OHM ... |
MNR02MRAPJ472 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 2 RES 4.7K OHM ... |
MNR04M0ABJ000 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES ZERO OHM ... |
MNR04M0ABJ680 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 68 OHM 08... |
MNR04MRAPJ152 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 1.5K OHM ... |
MNR04M0APJ122 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 1.2K OHM ... |
MNR04M0ABJ103 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 10K OHM 0... |
MNR04M0ABJ333 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 33K OHM 0... |
MNR04M0APJ821 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 820 OHM 0... |
MNR04MRAPJ122 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 1.2K OHM ... |
MNR04M0APJ102 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 1K OHM 08... |
MNR04M0APJ104 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 100K OHM ... |
MNR04M0APJ750 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 75 OHM 08... |
MNR04M0ABJ513 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 51K OHM 0... |
MNR04MRAPJ471 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 470 OHM 0... |
MNR04M0ABJ470 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 47 OHM 08... |
MNR04M0ABJ822 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 8.2K OHM ... |
MNR04M0APJ822 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 8.2K OHM ... |
MNR04M0APJ302 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 3K OHM 08... |
MNR04M0ABJ101 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 100 OHM 0... |
MNR04M0APJ101 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 100 OHM 0... |
MNR04M0APJ241 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 240 OHM 0... |
MNR02MRAPJ101 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 2 RES 100 OHM 0... |
MNR02M0APJ330 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 2 RES 33 OHM 04... |
MNR04MRAPJ223 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 22K OHM 0... |
MNR04MRAPJ680 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 68 OHM 08... |
MNR02M0APJ000 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 2 RES ZERO OHM ... |
MNR04MRAPJ820 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 82 OHM 08... |
MNR04M0ABJ153 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 15K OHM 0... |
MNR04MRAPJ560 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 56 OHM 08... |
MNR04M0APJ820 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 82 OHM 08... |
MNR04MRAPJ301 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 300 OHM 0... |
MNR04M0APJ120 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 12 OHM 08... |
MNR04M0ABJ100 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 10 OHM 08... |
MNR04M0APJ430 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 43 OHM 08... |
MNR04MRAPJ470 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 47 OHM 08... |
MNR02MRAPJ103 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 2 RES 10K OHM 0... |
MNR04M0ABJ121 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 120 OHM 0... |
MNR04MRAPJ121 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 120 OHM 0... |
MNR04M0ABJ430 | ROHM Semicon... | 0.0 $ | 1000 | RES ARRAY 4 RES 43 OHM 08... |
RES NTWRK 18 RES 47 OHM 36LBGA47 Ohm 1% ...

RES NTWRK 32 RES 56 OHM 36LBGA56 Ohm 1% ...

RES ARRAY 4 RES 39 OHM 120639 Ohm 5% 62....

RES ARRAY 4 RES 43 OHM 080443 Ohm 5% 62....

RES ARRAY 4 RES 120 OHM 0804120 Ohm 5% 6...

RES ARRAY 2 RES 300 OHM 0606300 Ohm 5% 6...
