
Allicdata Part #: | 1473-15291-2-ND |
Manufacturer Part#: |
SIT9120AI-1B1-25E150.000000G |
Price: | $ 2.13 |
Product Category: | Crystals, Oscillators, Resonators |
Manufacturer: | SiTime |
Short Description: | -40 TO 85C, 3225, 20PPM, 2.5V, 1 |
More Detail: | 150MHz XO (Standard) LVPECL Oscillator 2.5V Enable... |
DataSheet: | ![]() |
Quantity: | 1000 |
250 +: | $ 1.91830 |
Frequency Stability: | ±20ppm |
Current - Supply (Disable) (Max): | 35mA |
Height - Seated (Max): | 0.032" (0.80mm) |
Size / Dimension: | 0.126" L x 0.098" W (3.20mm x 2.50mm) |
Package / Case: | 6-SMD, No Lead |
Mounting Type: | Surface Mount |
Ratings: | -- |
Current - Supply (Max): | 69mA |
Operating Temperature: | -40°C ~ 85°C |
Absolute Pull Range (APR): | -- |
Series: | SiT9120 |
Voltage - Supply: | 2.5V |
Output: | LVPECL |
Function: | Enable/Disable |
Frequency: | 150MHz |
Type: | XO (Standard) |
Base Resonator: | MEMS |
Part Status: | Active |
Packaging: | Tape & Reel (TR) |
Due to market price fluctuations, if you need to purchase or consult the price. You can contact us or emial to us: sales@allicdata.com
Oscillators play an essential role in various industrial applications, from timer applications to microwave communication networks. SIT9120AI-1B1-25E150.000000G oscillators are crystal-controlled, low-power RF oscillators used in many industrial applications. This article will discuss the application field and working principle of this oscillator.
SIT9120AI-1B1-25E150.000000G oscillators are mainly used in telecommunications, medical, military, automotive, computer and consumer electronic applications. These oscillators offer a wide range of frequency stability and frequency tolerance, as well as low power consumption. The frequencies of these oscillators range from 10MHz to 25GHz, making them suitable for applications such as frequency step drives, signal processing, and signal generation.
The main purpose of SIT9120AI-1B1-25E150.000000G oscillators is to convert a signal of RF frequency to a signal of exact and constant frequency. This is achieved through a quartz crystal resonator, which is the heart of the oscillator. The crystal is connected to an oscillator circuit comprising of two transistors. The oscillator circuit amplifies the signal generated by the quartz crystal and the signal thus generated is further amplified by the amplifier circuit.
The frequency of the oscillator is determined by the frequency characteristics of the quartz crystal. The frequency of the oscillator is affected by factors such as temperature, supply voltage, load capacitance and parasitical capacitance. The oscillator is also affected by the external devices connected to it, such as filters, amplifiers and signal conditioners. The frequency stability and accuracy of the quartz crystal used in the oscillator can be improved by selecting the right load capacitance and design of the oscillator circuit.
Another type of oscillator is the voltage-control oscillator (VCO), which is used in frequency synthesis applications for wireless transmission. This oscillator is based on the same principle as the quartz crystal oscillator, but it uses a voltage-controlled oscillator instead of a quartz crystal. The frequency of the voltage-controlled oscillator is adjusted by applying a voltage to its control pin. The VCO is tuned over a wide range of frequencies and can be controlled remotely from the base station.
In addition to the frequency synthesizers used in wireless transmissions, there are other types of oscillators used in various industrial applications. These include relaxation oscillators, voltage-controlled oscillators, amplitude modulation oscillators and digital pulse oscillators. These oscillators generate signals with different characteristics such as frequency, modulation, rise/fall time, etc.
In conclusion, SIT9120AI-1B1-25E150.000000G oscillators are crystal-controlled, low-power RF oscillators used in various industrial applications. These oscillators use quartz crystal resonators to achieve exact frequencies, ensuring accuracy and reliability for all applications. The frequency stability and accuracy of the oscillators can be further improved by using a voltage-controlled oscillator or other types of oscillators.
The specific data is subject to PDF, and the above content is for reference
Part Number | Manufacturer | Price | Quantity | Description |
---|
SIT9120AC-1CF-25E74.175824X | SiTime | 2.3 $ | 1000 | -20 TO 70C, 5032, 10PPM, ... |
SIT9120AC-1BF-XXS133.330000G | SiTime | 2.3 $ | 1000 | -20 TO 70C, 3225, 10PPM, ... |
SIT9120AI-1BF-33S133.333000G | SiTime | 2.42 $ | 1000 | -40 TO 85C, 3225, 10PPM, ... |
SIT9002AC-432N33DB100.00000T | SiTime | 3.94 $ | 1000 | OSC XO 100MHZ SD100MHz ME... |
SIT9003AC-14-33DD-18.33111Y | SiTime | 0.85 $ | 1000 | OSC MEMS 18.33111MHZ LVCM... |
SIT9003AC-23-18EB-24.000000Y | SiTime | 0.85 $ | 1000 | OSC MEMS 24.0000MHZ LVCMO... |
SIT9003AC-23-33EB-5.09920Y | SiTime | 0.85 $ | 1000 | OSC MEMS 5.0992MHZ LV-CMO... |
SIT9003AC-83-33DB-23.00000Y | SiTime | 0.88 $ | 1000 | OSC MEMS 23.0000MHZ LVCMO... |
SIT9001AI-24-25S4-40.00000Y | SiTime | 0.94 $ | 1000 | OSC MEMS 40.0000MHZ LVCMO... |
SIT9120AC-1B3-33E50.000000D | SiTime | 1.16 $ | 1000 | -20 TO 70C, 3225, 50PPM, ... |
SIT9120AC-2C3-25S74.175824T | SiTime | 1.16 $ | 1000 | -20 TO 70C, 5032, 50PPM, ... |
SIT9120AI-2D3-33E133.333000T | SiTime | 1.22 $ | 1000 | OSC MEMS 133.3330MHZ LVDS... |
SIT9120AI-1B3-XXE148.351648D | SiTime | 1.22 $ | 1000 | -40 TO 85C, 3225, 50PPM, ... |
SIT9120AI-1C3-25E166.666000T | SiTime | 1.22 $ | 1000 | -40 TO 85C, 5032, 50PPM, ... |
SIT9120AI-1C3-25S75.000000T | SiTime | 1.22 $ | 1000 | -40 TO 85C, 5032, 50PPM, ... |
SIT9120AI-1D3-33S212.500000T | SiTime | 1.22 $ | 1000 | -40 TO 85C, 7050, 50PPM, ... |
SIT9120AI-1D3-XXE133.333333T | SiTime | 1.22 $ | 1000 | -40 TO 85C, 7050, 50PPM, ... |
SIT9120AI-1D3-XXS74.250000T | SiTime | 1.22 $ | 1000 | -40 TO 85C, 7050, 50PPM, ... |
SIT9120AI-2B3-25S166.000000D | SiTime | 1.22 $ | 1000 | -40 TO 85C, 3225, 50PPM, ... |
SIT9120AI-2D3-33E98.304000T | SiTime | 1.22 $ | 1000 | -40 TO 85C, 7050, 50PPM, ... |
SIT9120AC-1B3-25S133.333333E | SiTime | 1.24 $ | 1000 | -20 TO 70C, 3225, 50PPM, ... |
SIT9120AC-1B3-XXE166.666000E | SiTime | 1.24 $ | 1000 | -20 TO 70C, 3225, 50PPM, ... |
SIT9120AC-1C3-33S100.000000Y | SiTime | 1.24 $ | 1000 | -20 TO 70C, 5032, 50PPM, ... |
SIT9120AC-1C3-XXS155.520000Y | SiTime | 1.24 $ | 1000 | -20 TO 70C, 5032, 50PPM, ... |
SIT9120AC-1D3-XXE148.500000Y | SiTime | 1.24 $ | 1000 | -20 TO 70C, 7050, 50PPM, ... |
SIT9120AC-1D3-XXE50.000000Y | SiTime | 1.24 $ | 1000 | -20 TO 70C, 7050, 50PPM, ... |
SIT9120AC-2C3-25S25.000000Y | SiTime | 1.24 $ | 1000 | -20 TO 70C, 5032, 50PPM, ... |
SIT9120AC-2D3-33E133.330000Y | SiTime | 1.24 $ | 1000 | -20 TO 70C, 7050, 50PPM, ... |
SIT9120AC-2D3-33E148.351648Y | SiTime | 1.24 $ | 1000 | -20 TO 70C, 7050, 50PPM, ... |
SIT9120AC-2C2-25E100.000000T | SiTime | 1.27 $ | 1000 | OSC MEMS 100.0000MHZ LVDS... |
SIT9120AC-1B1-25E161.132800D | SiTime | 1.27 $ | 1000 | -20 TO 70C, 3225, 20PPM, ... |
SIT9120AC-1B2-33S200.000000D | SiTime | 1.27 $ | 1000 | -20 TO 70C, 3225, 25PPM, ... |
SIT9120AC-1B2-XXE155.520000D | SiTime | 1.27 $ | 1000 | -20 TO 70C, 3225, 25PPM, ... |
SIT9120AC-1B2-XXE74.250000D | SiTime | 1.27 $ | 1000 | -20 TO 70C, 3225, 25PPM, ... |
SIT9120AC-1C2-33S133.300000T | SiTime | 1.27 $ | 1000 | -20 TO 70C, 5032, 25PPM, ... |
SIT9120AC-1D1-33S150.000000T | SiTime | 1.27 $ | 1000 | -20 TO 70C, 7050, 20PPM, ... |
SIT9120AC-1D2-33E98.304000T | SiTime | 1.27 $ | 1000 | -20 TO 70C, 7050, 25PPM, ... |
SIT9120AC-2B1-33E133.333300D | SiTime | 1.27 $ | 1000 | -20 TO 70C, 3225, 20PPM, ... |
SIT9120AC-2B1-33E161.132800D | SiTime | 1.27 $ | 1000 | -20 TO 70C, 3225, 20PPM, ... |
SIT9120AC-2B2-25E98.304000D | SiTime | 1.27 $ | 1000 | -20 TO 70C, 3225, 25PPM, ... |
-20 TO 70C, 2520, 10PPM, 1.8V, 2Oscillat...

-20 TO 70C, 2520, 10PPM, 1.8V, 2Oscillat...

-20 TO 70C, 2520, 10PPM, 1.8V, 2Oscillat...

-20 TO 70C, 3225, 10PPM, 1.8V, 2Oscillat...

-20 TO 70C, 3225, 10PPM, 1.8V, 2Oscillat...

-20 TO 70C, 3225, 10PPM, 1.8V, 2Oscillat...
