
Allicdata Part #: | 1182-1029-ND |
Manufacturer Part#: |
BMOD0500 P016 B02 |
Price: | $ 236.22 |
Product Category: | Capacitors |
Manufacturer: | Maxwell Technologies Inc. |
Short Description: | CAP 500F 16V CHASSIS MOUNT |
More Detail: | 500F (EDLC) Supercapacitor 16V Module, Screw Termi... |
DataSheet: | ![]() |
Quantity: | 5 |
Moisture Sensitivity Level (MSL): | 1 (Unlimited) |
Lead Free Status / RoHS Status: | Lead free / RoHS Compliant |
1 +: | $ 214.74000 |
10 +: | $ 205.86100 |
ESR (Equivalent Series Resistance): | 2.1 mOhm |
Operating Temperature: | -40°C ~ 65°C |
Height - Seated (Max): | 7.047" (179.00mm) |
Size / Dimension: | 16.457" L x 2.677" W (418.00mm x 68.00mm) |
Lead Spacing: | -- |
Package / Case: | Module, Screw Terminals |
Mounting Type: | Chassis Mount |
Termination: | Screw Terminals |
Lifetime @ Temp.: | 1500 Hrs @ 65°C |
Series: | -- |
Voltage - Rated: | 16V |
Tolerance: | -- |
Capacitance: | 500F |
Moisture Sensitivity Level (MSL): | -- |
Part Status: | Active |
Lead Free Status / RoHS Status: | -- |
Packaging: | Bulk |
Due to market price fluctuations, if you need to purchase or consult the price. You can contact us or emial to us: sales@allicdata.com
Electric double layer capacitors, commonly known as EDLCs or supercapacitors, are devices that use electrochemical processes to store energy. Typically, they are composed of two oppositely charged conductive electrodes separated by an electrolyte. When a voltage is applied between the two electrodes, an electric field is created and a charge carrier (usually electrolyte ions) are drawn to the electrode with the opposite charge and stored at the surface of the electrode. The charge accumulates on the surface of the electrode until it reaches its maximum electrode capacitance. When the applied voltage is removed, the charge carriers in the electrolyte return to their original positions.
In contrast to traditional capacitors, the electrodes in EDLCs are composed of highly crystalline, porous material such as carbon, allowing for superior charge storage. EDLCs can store and transfer energy more rapidly and over a larger range of temperatures and frequencies than traditional capacitors, making them ideal for high power applications, such as regenerative braking.
In automotive applications, EDLCs are used to improve the efficiency and performance of combustion engines. They are most commonly used as starting/cranking capacitors that are charged and discharged several times per second. When the engine’s starter motor is engaged, the EDLCs quickly discharge energy to the starter motor, allowing for a rapid start-up. After the engine is running, EDLCs recharge and store energy for use at a later time. This eliminates the need for heavier and more expensive lead-acid batteries.
In battery-less lighting, EDLCs are used to store energy from solar cell arrays. During daylight hours, energy is stored in the EDLCs and used to power LED lights during dark hours. This provides a stable source of nighttime lighting and eliminates the need for a battery.
The primary application of EDLCs in wireless communication is to provide an energy reserve for communication devices with either limited power sources or intermittent usage. In a cellular phone, for example, an EDLC can be used to store energy from the power supply and then discharge it quickly when the phone is sending or receiving signals. This dramatically decreases power consumption and increases the operating life of the device.
In short, EDLCs enable higher power, increased efficiency, higher temperatures, and longer operating life in a wide range of applications. Although they are relatively new technology, their broad range of applications makes them attractive for a variety of markets.
The specific data is subject to PDF, and the above content is for reference
Part Number | Manufacturer | Price | Quantity | Description |
---|
BMOD0130 P056 B03 | Maxwell Tech... | 0.5 $ | 6 | CAP 130F 56V CHASSIS MOUN... |
BMOD0002 P005 B02 | Maxwell Tech... | 3.81 $ | 1000 | CAP EDLC 2.5F -10% +20% 5... |
BMOD0500 P016 B02 | Maxwell Tech... | 236.22 $ | 5 | CAP 500F 16V CHASSIS MOUN... |
BMOD0006 E160 B02 | Maxwell Tech... | 492.97 $ | 1000 | CAP 5.8F 160V M5 THREAD5.... |
BMOD0083 P048 B01 | Maxwell Tech... | 0.5 $ | 4 | CAP 83F 48V CHASSIS MOUNT... |
BMOD0165 P048 B01 | Maxwell Tech... | 0.0 $ | 1000 | CAP 165F 48V CHASSIS MOUN... |
BMOD0500 P016 B01 | Maxwell Tech... | 249.91 $ | 61 | CAP 500F 16V CHASSIS MOUN... |
BMOD0165 P048 B09 | Maxwell Tech... | 0.0 $ | 1000 | CAP 165F 48V CHASSIS MOUN... |
BMOD0058 E016 B02 | Maxwell Tech... | 59.72 $ | 261 | CAP 58F 16V CHASSIS MOUNT... |
BMOD0063 P125 B08 | Maxwell Tech... | 2.48 $ | 1000 | CAP 63F 125V CHASSIS MOUN... |
BMOD0094 P075 B02 | Maxwell Tech... | 0.99 $ | 2 | CAP 94F 75V CHASSIS MOUNT... |
BMOD0165 P048 C01 | Maxwell Tech... | 0.5 $ | 1000 | CAP 165F 48V CHASSIS MOUN... |
CAP 100MF 5.5V THROUGH HOLE100mF (EDLC) ...

CAP 4000F 20% 2.5V CHASSIS MOUNT4000F (E...

CAP 2200F 20% 2.5V CHASSIS MOUNT2200F (E...

CAP 1.5F 5.5V THROUGH HOLE1.5F (EDLC) Su...

CAP 330MF 5.5V THROUGH HOLE330mF (EDLC) ...

CAP 68MF -20% +80% 5.5V SMD68mF (EDLC) S...
