
Allicdata Part #: | IR02EB1R8K-ND |
Manufacturer Part#: |
IR02EB1R8K |
Price: | $ 0.00 |
Product Category: | Inductors, Coils, Chokes |
Manufacturer: | Vishay Dale |
Short Description: | IR-2 1.8 10% EB E2 |
More Detail: | 1.8µH Unshielded Inductor 455mA 300 mOhm Max Axia... |
DataSheet: | ![]() |
Quantity: | 1000 |
1 +: | 0.00000 |
Q @ Freq: | 30 @ 7.9MHz |
Height - Seated (Max): | -- |
Size / Dimension: | 0.120" Dia x 0.260" L (3.02mm x 6.60mm) |
Supplier Device Package: | Axial |
Package / Case: | Axial |
Mounting Type: | Through Hole |
Features: | -- |
Inductance Frequency - Test: | 7.9MHz |
Operating Temperature: | -55°C ~ 105°C |
Ratings: | -- |
Frequency - Self Resonant: | 125MHz |
Series: | IR |
DC Resistance (DCR): | 300 mOhm Max |
Shielding: | Unshielded |
Current - Saturation: | -- |
Current Rating: | 455mA |
Tolerance: | ±10% |
Inductance: | 1.8µH |
Material - Core: | Iron |
Type: | -- |
Part Status: | Obsolete |
Packaging: | -- |
Due to market price fluctuations, if you need to purchase or consult the price. You can contact us or emial to us: sales@allicdata.com
Fixed Inductors are electronic components designed to store energy in a magnetic field. They are commonly used in a variety of circuits, such as filters, transformers, oscillators, power supplies, and other applications. The fixed inductor is available in different types with various ratings and properties. Some of the widely used types include surface-mount, leaded, and discrete inductors.
The IR02EB1R8K is a fixed type inductor component for various applications. It is characterized by an inductance range of 0.42 ~ 8.2uH, withstanding current of 2.3A, and maximum DC resistance of 0.2 ~ 8.5 Ohms. It has the ability to operate over a wide temperature range of -40°C ~ +105°C and features a highly stable design with an external temperature coefficient of 0.25 ± 0.06%. This fixed inductor provides superior performance in applications that require high reliability, such as automotive, 10-gigabit Ethernet optical modules, robotics, and medical implementation.
The IR02EB1R8K has open construction, which allows it to remain open even when the inductor is fully charged. The open construction also serves as an ideal protection mechanism against dust, foreign particles, and extreme temperatures. It has a low profile and a lightweight design, which helps reduce power consumption and size. The device is classified by its material, rating, size, type, and shape.
In terms of operating principle, the IR02EB1R8K inductor works on the principle of inductors. It generates magnetic flux through two opposite electrodes. A varying current passing through the two electrodes is converted into a magnetic field. The magnitude of the magnetic field created by the inductor depends on the magnitude of the current passing through the two terminals. As current increases, the inductor\'s magnetic field intensity also increases. The generated magnetic field produces a back EMF (electromotive force) which opposes the applied voltage and helps regulate it. Thus, the inductor helps to stabilize the voltage within the circuit.
The IR02EB1R8K has been designed for use in various applications, including power supply filtration, switching power circuits, power transformers, radio frequency circuits, and computer breakers. It is commonly used in dc to dc converters, motor-drive controllers, and other electronic devices. This inductor is also used in telecommunications, automotive systems, medical devices, aviation, and industrial automation.
Today, the IR02EB1R8K inductor is widely used for many electronic applications due to its superior performance and reliability. It is becoming the most sought-after inductor solution for many applications, due to its ability to handle high temperatures, its open construction, its low profile, and its lightweight design. The IR02EB1R8K inductor is a reliable solution for a variety of applications and is ideal for use in power supplies, communication systems, and other applications that require high efficiency and reliability.
The specific data is subject to PDF, and the above content is for reference
Part Number | Manufacturer | Price | Quantity | Description |
---|
IR02BH100J | Vishay Dale | 0.0 $ | 1000 | IR-2 10 5% B0810H Unshiel... |
IR02EB102K | Vishay Dale | 0.0 $ | 1000 | IR-2 1K 10% EB E21mH Unsh... |
IR02RU5R6J | Vishay Dale | 0.0 $ | 1000 | IR-2 5.6 5% R365.6H Unshi... |
IR02RUR82J | Vishay Dale | 0.0 $ | 1000 | IR-2 .82 5% R36820nH Unsh... |
IR02SHR56K | Vishay Dale | 0.0 $ | 1000 | IR-2 .56 10% RJ1560nH Uns... |
IR02EB391K | Vishay Dale | 0.0 $ | 1000 | IR-2 390 10% EB E2390H Un... |
IR02EV4R7J | Vishay Dale | 0.0 $ | 1000 | IR-2 4.7 5% EV E24.7H Uns... |
IR02BH8R2K | Vishay Dale | 0.0 $ | 1000 | IR-2 8.2 10% B088.2H Unsh... |
IR02RUR68K | Vishay Dale | 0.0 $ | 1000 | IR-2 .68 10% R36680nH Uns... |
IR02SH471K | Vishay Dale | 0.0 $ | 1000 | IR-2 470 10% RJ1470H Unsh... |
IR02RU3R0J | Vishay Dale | 0.0 $ | 1000 | IR-2 3 5% R363H Unshielde... |
IR02SH221K | Vishay Dale | 0.0 $ | 1000 | IR-2 220 10% RJ1220H Unsh... |
IR02SH121K | Vishay Dale | 0.0 $ | 1000 | IR-2 120 10% RJ1120H Unsh... |
IR02STR22K | Vishay Dale | 0.0 $ | 1000 | IR-2 .22 10% RJ4220nH Uns... |
IR02BH2R2K | Vishay Dale | 0.0 $ | 1000 | IR-2 2.2 10% B082.2H Unsh... |
IR02BHR15F | Vishay Dale | 0.0 $ | 1000 | IR-2 .15 1% B08150nH Unsh... |
IR02BH1R5K | Vishay Dale | 0.0 $ | 1000 | IR-2 1.5 10% B081.5H Unsh... |
IR02RUR47K | Vishay Dale | 0.0 $ | 1000 | IR-2 .47 10% R36470nH Uns... |
IR02BHR33J | Vishay Dale | 0.0 $ | 1000 | IR-2 .33 5% B08330nH Unsh... |
IR02BH101K | Vishay Dale | 0.0 $ | 1000 | IR-2 100 10% B08100H Unsh... |
IR02BH1R5J | Vishay Dale | 0.0 $ | 1000 | IR-2 1.5 5% B081.5H Unshi... |
IR02STR18H | Vishay Dale | 0.0 $ | 1000 | IR-2 .18 3% RJ4180nH Unsh... |
IR02BH1R5F | Vishay Dale | 0.0 $ | 1000 | IR-2 1.5 1% B081.5H Unshi... |
IR02RU102K | Vishay Dale | 0.0 $ | 1000 | IR-2 1K 10% R361mH Unshie... |
IR02RUR33K | Vishay Dale | 0.0 $ | 1000 | IR-2 .33 10% R36330nH Uns... |
IR02EV121K | Vishay Dale | 0.0 $ | 1000 | IR-2 120 10% EV E2120H Un... |
IR02RU3R3K | Vishay Dale | 0.0 $ | 1000 | IR-2 3.3 10% R363.3H Unsh... |
IR02ST180H | Vishay Dale | 0.0 $ | 1000 | IR-2 18 3% RJ418H Unshiel... |
IR02BH2R7J | Vishay Dale | 0.0 $ | 1000 | IR-2 2.7 5% B082.7H Unshi... |
IR02RU1R5H | Vishay Dale | 0.0 $ | 1000 | IR-2 1.5 3% R361.5H Unshi... |
IR02RU1R8K | Vishay Dale | 0.0 $ | 1000 | IR-2 1.8 10% R361.8H Unsh... |
IR02RU3R0H | Vishay Dale | 0.0 $ | 1000 | IR-2 3 3% R363H Unshielde... |
IR02SHR10J | Vishay Dale | 0.0 $ | 1000 | IR-2 .1 5% RJ1100nH Unshi... |
IR02BH121K | Vishay Dale | 0.0 $ | 1000 | IR-2 120 10% B08120H Unsh... |
IR02RUR27K | Vishay Dale | 0.0 $ | 1000 | IR-2 .27 10% R36270nH Uns... |
IR02SH220K | Vishay Dale | 0.0 $ | 1000 | IR-2 22 10% RJ122H Unshie... |
IR02BH3R9K | Vishay Dale | 0.0 $ | 1000 | IR-2 3.9 10% B083.9H Unsh... |
IR02BH1R0J | Vishay Dale | 0.0 $ | 1000 | IR-2 1 5% B081H Unshielde... |
IR02ERR33J | Vishay Dale | 0.0 $ | 1000 | IR-2 .33 5% ER E2330nH Un... |
IR02EV330K | Vishay Dale | 0.0 $ | 1000 | FIXED IND 33UH 130MA 3.4 ... |
FIXED IND 10UH 590MA 350 MOHM10H Unshiel...

FIXED IND 22NH 1.4A 70 MOHM SMD22nH Unsh...

FIXED IND 13NH 600MA SMD13nH Unshielded ...

FIXED IND 680UH 210MA 4.6 OHM680H Unshie...

FIXED IND 470UH 1.3A 280 MOHM TH470H Uns...

FIXED IND 8.2UH 165MA 2.2 OHM TH8.2H Uns...
