
Allicdata Part #: | IR02STR22K-ND |
Manufacturer Part#: |
IR02STR22K |
Price: | $ 0.00 |
Product Category: | Inductors, Coils, Chokes |
Manufacturer: | Vishay Dale |
Short Description: | IR-2 .22 10% RJ4 |
More Detail: | 220nH Unshielded Inductor 1.025A 140 mOhm Max Axi... |
DataSheet: | ![]() |
Quantity: | 1000 |
1 +: | 0.00000 |
Q @ Freq: | 33 @ 25MHz |
Height - Seated (Max): | -- |
Size / Dimension: | 0.120" Dia x 0.260" L (3.02mm x 6.60mm) |
Supplier Device Package: | Axial |
Package / Case: | Axial |
Mounting Type: | Through Hole |
Features: | -- |
Inductance Frequency - Test: | 25MHz |
Operating Temperature: | -55°C ~ 125°C |
Ratings: | -- |
Frequency - Self Resonant: | 510MHz |
Series: | IR |
DC Resistance (DCR): | 140 mOhm Max |
Shielding: | Unshielded |
Current - Saturation: | -- |
Current Rating: | 1.025A |
Tolerance: | ±10% |
Inductance: | 220nH |
Material - Core: | Phenolic |
Type: | -- |
Part Status: | Obsolete |
Packaging: | -- |
Due to market price fluctuations, if you need to purchase or consult the price. You can contact us or emial to us: sales@allicdata.com
Fixed Inductors – IR02STR22K Application Field and Working Principle
Fixed inductors are electrical components designed to store energy in the form of a magnetic field when electrical current passes through the inductor. These components are ubiquitous in modern electronics, appearing in nearly every device and electronic system imaginable. As such, there are hundreds of different types and varieties of fixed inductors available on the market today; one of the most popular of these varieties being the IR02STR22K.
The IR02STR22K is a popular component for a variety of applications in both the consumer and commercial sectors. It can be utilized as an inductor for high frequency power converters, current control, and filtering. Additionally, the IR02STR22K is well-suited for use in DC/DC converters, AC/DC converters, and DC/AC inverters.
The IR02STR22K is comprised of a metal core, a coil, and a ferrite rod wrapped around the metal core. The ferrite rod and metal core bring the DC bias component in the circuit, while the coil is designed to induce an EMF in response to changing AC in the circuit. The characteristics of the IR02STR22K are dependent upon the number of turns on the coil, the size of the core, and the material properties of the ferrite rod.
The key advantage of the IR02STR22K is its superior efficiency compared to other inductors. Additionally, it is capable of handling more power than other inductors, while also being smaller in size. Another benefit from the design of the IR02STR22K is its low cost, making it more accessible than many other inductors on the market.
Using the IR02STR22K is relatively straightforward. First, the inductor must be connected to a circuit as a simple inductor element, or as part of an electronic signal conditioning circuit. It should then be connected to a power supply and adjusted to fit the specific application needs. The inductance of the IR02STR22K can be controlled by vary the current in the coil. As the current is increased, the magnetic field produced by the inductor will also increase, resulting in a higher inductance.
The IR02STR22K is particularly well-suited for use in applications which require high levels of precision and accuracy, such as those which require delicate timing circuits. Additionally, its low power consumption and reduced size makes it a great choice for applications which require a minimal amount of space. It is also well suited for use in applications which require high switching frequencies, due to its stability and low ripple current.
In summary, the IR02STR22K is an excellent choice for a wide variety of applications. It is efficient, cost-effective, and can handle large amounts of power. Additionally, it is small in size and has low power consumption requirements. As such, it is well-suited for use in a variety of signal conditioning, precision timing, and high-frequency switching applications.
The specific data is subject to PDF, and the above content is for reference
Part Number | Manufacturer | Price | Quantity | Description |
---|
IR02BH100J | Vishay Dale | 0.0 $ | 1000 | IR-2 10 5% B0810H Unshiel... |
IR02EB102K | Vishay Dale | 0.0 $ | 1000 | IR-2 1K 10% EB E21mH Unsh... |
IR02RU5R6J | Vishay Dale | 0.0 $ | 1000 | IR-2 5.6 5% R365.6H Unshi... |
IR02RUR82J | Vishay Dale | 0.0 $ | 1000 | IR-2 .82 5% R36820nH Unsh... |
IR02SHR56K | Vishay Dale | 0.0 $ | 1000 | IR-2 .56 10% RJ1560nH Uns... |
IR02EB391K | Vishay Dale | 0.0 $ | 1000 | IR-2 390 10% EB E2390H Un... |
IR02EV4R7J | Vishay Dale | 0.0 $ | 1000 | IR-2 4.7 5% EV E24.7H Uns... |
IR02BH8R2K | Vishay Dale | 0.0 $ | 1000 | IR-2 8.2 10% B088.2H Unsh... |
IR02RUR68K | Vishay Dale | 0.0 $ | 1000 | IR-2 .68 10% R36680nH Uns... |
IR02SH471K | Vishay Dale | 0.0 $ | 1000 | IR-2 470 10% RJ1470H Unsh... |
IR02RU3R0J | Vishay Dale | 0.0 $ | 1000 | IR-2 3 5% R363H Unshielde... |
IR02SH221K | Vishay Dale | 0.0 $ | 1000 | IR-2 220 10% RJ1220H Unsh... |
IR02SH121K | Vishay Dale | 0.0 $ | 1000 | IR-2 120 10% RJ1120H Unsh... |
IR02STR22K | Vishay Dale | 0.0 $ | 1000 | IR-2 .22 10% RJ4220nH Uns... |
IR02BH2R2K | Vishay Dale | 0.0 $ | 1000 | IR-2 2.2 10% B082.2H Unsh... |
IR02BHR15F | Vishay Dale | 0.0 $ | 1000 | IR-2 .15 1% B08150nH Unsh... |
IR02BH1R5K | Vishay Dale | 0.0 $ | 1000 | IR-2 1.5 10% B081.5H Unsh... |
IR02RUR47K | Vishay Dale | 0.0 $ | 1000 | IR-2 .47 10% R36470nH Uns... |
IR02BHR33J | Vishay Dale | 0.0 $ | 1000 | IR-2 .33 5% B08330nH Unsh... |
IR02BH101K | Vishay Dale | 0.0 $ | 1000 | IR-2 100 10% B08100H Unsh... |
IR02BH1R5J | Vishay Dale | 0.0 $ | 1000 | IR-2 1.5 5% B081.5H Unshi... |
IR02STR18H | Vishay Dale | 0.0 $ | 1000 | IR-2 .18 3% RJ4180nH Unsh... |
IR02BH1R5F | Vishay Dale | 0.0 $ | 1000 | IR-2 1.5 1% B081.5H Unshi... |
IR02RU102K | Vishay Dale | 0.0 $ | 1000 | IR-2 1K 10% R361mH Unshie... |
IR02RUR33K | Vishay Dale | 0.0 $ | 1000 | IR-2 .33 10% R36330nH Uns... |
IR02EV121K | Vishay Dale | 0.0 $ | 1000 | IR-2 120 10% EV E2120H Un... |
IR02RU3R3K | Vishay Dale | 0.0 $ | 1000 | IR-2 3.3 10% R363.3H Unsh... |
IR02ST180H | Vishay Dale | 0.0 $ | 1000 | IR-2 18 3% RJ418H Unshiel... |
IR02BH2R7J | Vishay Dale | 0.0 $ | 1000 | IR-2 2.7 5% B082.7H Unshi... |
IR02RU1R5H | Vishay Dale | 0.0 $ | 1000 | IR-2 1.5 3% R361.5H Unshi... |
IR02RU1R8K | Vishay Dale | 0.0 $ | 1000 | IR-2 1.8 10% R361.8H Unsh... |
IR02RU3R0H | Vishay Dale | 0.0 $ | 1000 | IR-2 3 3% R363H Unshielde... |
IR02SHR10J | Vishay Dale | 0.0 $ | 1000 | IR-2 .1 5% RJ1100nH Unshi... |
IR02BH121K | Vishay Dale | 0.0 $ | 1000 | IR-2 120 10% B08120H Unsh... |
IR02RUR27K | Vishay Dale | 0.0 $ | 1000 | IR-2 .27 10% R36270nH Uns... |
IR02SH220K | Vishay Dale | 0.0 $ | 1000 | IR-2 22 10% RJ122H Unshie... |
IR02BH3R9K | Vishay Dale | 0.0 $ | 1000 | IR-2 3.9 10% B083.9H Unsh... |
IR02BH1R0J | Vishay Dale | 0.0 $ | 1000 | IR-2 1 5% B081H Unshielde... |
IR02ERR33J | Vishay Dale | 0.0 $ | 1000 | IR-2 .33 5% ER E2330nH Un... |
IR02EV330K | Vishay Dale | 0.0 $ | 1000 | FIXED IND 33UH 130MA 3.4 ... |
FIXED IND 10UH 590MA 350 MOHM10H Unshiel...

FIXED IND 22NH 1.4A 70 MOHM SMD22nH Unsh...

FIXED IND 13NH 600MA SMD13nH Unshielded ...

FIXED IND 680UH 210MA 4.6 OHM680H Unshie...

FIXED IND 470UH 1.3A 280 MOHM TH470H Uns...

FIXED IND 8.2UH 165MA 2.2 OHM TH8.2H Uns...
