
Allicdata Part #: | IM04BH241K-ND |
Manufacturer Part#: |
IM04BH241K |
Price: | $ 0.00 |
Product Category: | Inductors, Coils, Chokes |
Manufacturer: | Vishay Dale |
Short Description: | IM-4 240 10% B08 |
More Detail: | 240µH Unshielded Molded Inductor 101mA 7.8 Ohm Max... |
DataSheet: | ![]() |
Quantity: | 1000 |
1 +: | 0.00000 |
Q @ Freq: | 65 @ 790kHz |
Height - Seated (Max): | -- |
Size / Dimension: | 0.155" Dia x 0.375" L (3.94mm x 9.53mm) |
Supplier Device Package: | Axial |
Package / Case: | Axial |
Mounting Type: | Through Hole |
Features: | -- |
Inductance Frequency - Test: | 790kHz |
Operating Temperature: | -55°C ~ 125°C |
Ratings: | -- |
Frequency - Self Resonant: | 5.9MHz |
Series: | IM |
DC Resistance (DCR): | 7.8 Ohm Max |
Shielding: | Unshielded |
Current - Saturation: | -- |
Current Rating: | 101mA |
Tolerance: | ±10% |
Inductance: | 240µH |
Material - Core: | Iron |
Type: | Molded |
Part Status: | Obsolete |
Packaging: | -- |
Due to market price fluctuations, if you need to purchase or consult the price. You can contact us or emial to us: sales@allicdata.com
Fixed Inductors
An inductor is an electrical component that helps regulate electrical currents in circuits. A fixed inductor is an inductor with a predetermined value and which is unable to be altered easily. The IM04BH241K is one type of fixed inductor.
IM04BH241K Application Field
The IM04BH241K is designed for use primarily in computer electronics due to its efficient power-handling capabilities. It is a component that is used to help regulate and manage the flow of power in a computer system. It can be used in power supplies, AC/DC conversion circuits, switching power converters, and DC/DC converters. In many cases, this inductor is used together with a resistor to provide the correct level of power for the computer.
IM04BH241K Working Principle
The IM04BH241K is a type of wound inductor. The working principle relies on the presence of an inductive component that is designed to resist changes in current. When the inductor is present in a circuit, the current will experience a resistance due to the inductive component. This helps to regulate and manage the current in the circuit.
The inductor works by converting the electrical energy in the circuit into a magnetic field. This magnetic field is then used to help resist any changes in the current flow. By using this resistive force, the levels of current in the circuit can be regulated and managed correctly.
Conclusion
The IM04BH241K is a fixed inductor that is designed for use in computer electronics. This inductor works by converting electrical energy into a magnetic field, which then has a resistive force against any changes in current. This ensures that the power levels within the computer system are correctly regulated and managed.
The specific data is subject to PDF, and the above content is for reference
Part Number | Manufacturer | Price | Quantity | Description |
---|
IM04EB330K | Vishay Dale | 0.0 $ | 1000 | FIXED IND 33UH 165MA 3 OH... |
IM04RUR39J | Vishay Dale | 0.0 $ | 1000 | IM-4 .39 5% R36390nH Unsh... |
IM04SH1R8J | Vishay Dale | 0.0 $ | 1000 | IM-4 1.8 5% RJ11.8H Unshi... |
IM04ST131H | Vishay Dale | 0.0 $ | 1000 | IM-4 130 3% RJ4130H Unshi... |
IM04ES180K | Vishay Dale | 0.0 $ | 1000 | IM-4 18 10% ES E218H Unsh... |
IM04RU1R5J | Vishay Dale | 0.0 $ | 1000 | IM-4 1.5 5% R361.5H Unshi... |
IM04RUR47M | Vishay Dale | 0.0 $ | 1000 | IM-4 .47 20% R36470nH Uns... |
IM04ST2R2K | Vishay Dale | 0.0 $ | 1000 | IM-4 2.2 10% RJ42.2H Unsh... |
IM04STR47K | Vishay Dale | 0.0 $ | 1000 | IM-4 .47 10% RJ4470nH Uns... |
IM04STR68K | Vishay Dale | 0.0 $ | 1000 | IM-4 .68 10% RJ4680nH Uns... |
IM04BH101K | Vishay Dale | 0.0 $ | 1000 | IM-4 100 10% B08100H Unsh... |
IM04BH220K | Vishay Dale | 0.0 $ | 1000 | IM-4 22 10% B0822H Unshie... |
IM04ER100J | Vishay Dale | 0.0 $ | 1000 | IM-4 10 5% ER E210H Unshi... |
IM04ES151J | Vishay Dale | 0.0 $ | 1000 | IM-4 150 5% ES E2150H Uns... |
IM04SH271H | Vishay Dale | 0.0 $ | 1000 | IM-4 270 3% RJ1270H Unshi... |
IM04SHR33J | Vishay Dale | 0.0 $ | 1000 | IM-4 .33 5% RJ1330nH Unsh... |
IM04SHR56K | Vishay Dale | 0.0 $ | 1000 | IM-4 .56 10% RJ1560nH Uns... |
IM04ST1R5F | Vishay Dale | 0.0 $ | 1000 | IM-4 1.5 1% RJ41.5H Unshi... |
IM04BH8R2K | Vishay Dale | 0.0 $ | 1000 | IM-4 8.2 10% B088.2H Unsh... |
IM04ST1R5J | Vishay Dale | 0.0 $ | 1000 | IM-4 1.5 5% RJ41.5H Unshi... |
IM04BH221K | Vishay Dale | 0.0 $ | 1000 | IM-4 220 10% B08220H Unsh... |
IM04ER220J | Vishay Dale | 0.0 $ | 1000 | IM-4 22 5% ER E222H Unshi... |
IM04EV150K | Vishay Dale | 0.0 $ | 1000 | IM-4 15 10% EV E215H Unsh... |
IM04RU1R2K | Vishay Dale | 0.0 $ | 1000 | IM-4 1.2 10% R361.2H Unsh... |
IM04RU470J | Vishay Dale | 0.0 $ | 1000 | IM-4 47 5% R3647H Unshiel... |
IM04SH8R2K | Vishay Dale | 0.0 $ | 1000 | IM-4 8.2 10% RJ18.2H Unsh... |
IM04BH241K | Vishay Dale | 0.0 $ | 1000 | IM-4 240 10% B08240H Unsh... |
IM04NF470J | Vishay Dale | 0.0 $ | 1000 | IM-4 47 5% R1447H Unshiel... |
IM04SH101H | Vishay Dale | 0.0 $ | 1000 | IM-4 100 3% RJ1100H Unshi... |
IM04SH390J | Vishay Dale | 0.0 $ | 1000 | IM-4 39 5% RJ139H Unshiel... |
IM04STR22K | Vishay Dale | 0.0 $ | 1000 | IM-4 .22 10% RJ4220nH Uns... |
IM04ER470J | Vishay Dale | 0.0 $ | 1000 | IM-4 47 5% ER E247H Unshi... |
IM04RU3R9K | Vishay Dale | 0.0 $ | 1000 | IM-4 3.9 10% R363.9H Unsh... |
IM04SH180J | Vishay Dale | 0.0 $ | 1000 | IM-4 18 5% RJ118H Unshiel... |
IM04SH430J | Vishay Dale | 0.0 $ | 1000 | IM-4 43 5% RJ143H Unshiel... |
IM04SH5R6K | Vishay Dale | 0.0 $ | 1000 | IM-4 5.6 10% RJ15.6H Unsh... |
IM04ER390K | Vishay Dale | 0.0 $ | 1000 | IM-4 39 10% ER E239H Unsh... |
IM04ER4R7J | Vishay Dale | 0.0 $ | 1000 | IM-4 4.7 5% ER E24.7H Uns... |
IM04SHR47M | Vishay Dale | 0.0 $ | 1000 | IM-4 .47 20% RJ1470nH Uns... |
IM04EB220K | Vishay Dale | 0.0 $ | 1000 | FIXED IND 22UH 175MA 2.5 ... |
FIXED IND 10UH 590MA 350 MOHM10H Unshiel...

FIXED IND 22NH 1.4A 70 MOHM SMD22nH Unsh...

FIXED IND 13NH 600MA SMD13nH Unshielded ...

FIXED IND 680UH 210MA 4.6 OHM680H Unshie...

FIXED IND 470UH 1.3A 280 MOHM TH470H Uns...

FIXED IND 8.2UH 165MA 2.2 OHM TH8.2H Uns...
