
Allicdata Part #: | XCV2000E-8BG560C-ND |
Manufacturer Part#: |
XCV2000E-8BG560C |
Price: | $ 0.00 |
Product Category: | Integrated Circuits (ICs) |
Manufacturer: | Xilinx Inc. |
Short Description: | IC FPGA 404 I/O 560MBGA |
More Detail: | N/A |
DataSheet: | ![]() |
Quantity: | 1000 |
1 +: | 0.00000 |
Series: | Virtex®-E |
Part Status: | Obsolete |
Number of LABs/CLBs: | 9600 |
Number of Logic Elements/Cells: | 43200 |
Total RAM Bits: | 655360 |
Number of I/O: | 404 |
Number of Gates: | 2541952 |
Voltage - Supply: | 1.71 V ~ 1.89 V |
Mounting Type: | Surface Mount |
Operating Temperature: | 0°C ~ 85°C (TJ) |
Package / Case: | 560-LBGA Exposed Pad, Metal |
Supplier Device Package: | 560-MBGA (42.5x42.5) |
Base Part Number: | XCV2000E |
Due to market price fluctuations, if you need to purchase or consult the price. You can contact us or emial to us: sales@allicdata.com
The embedded - FPGAs, Field Programmable Gate Arrays, have been a tool used in various technological products and devices, such as digital cameras, telephones and video game consoles, for many years. The XCV2000E-8BG560C is a perfect example of one of these devices and is used in a wide range of applications.
The XCV2000E-8BG560C can be used as a central processing unit, or as a peripheral processor in a range of applications. It can be used to control the functionalities of other mechanisms, such as providing assistance in the operation of robots and coding the communication interface between two systems. Additionally, it can be used in the development of new electronic systems, allowing engineers and designers to rapidly prototype and test ideas before moving to a more permanent design.
The main function of the XCV2000E-8BG560C is its ability to process data quickly and efficiently. It is capable of executing a large number of instructions in a short period of time. The logic control of its programmable logic cells ensures that the device can automatically adjust to the optimal configuration depending on the characteristics of the task or data it receives input. This helps to ensure that the device can save energy and reduce power consumption while still running reliably.
In comparison to other processor designs, the XCV2000E-8BG560C offers unique advantages. It is highly efficient since its on-chip programmable logic elements can be configured for specific tasks. Furthermore, it has multiple address and data interfaces, which enables it to support different protocols and designs. In addition, it supports multiple clock rates, allowing it to manage tasks within tight timing restrictions.
The XCV2000E-8BG560C consists of various logic elements, such as logic cells and memory blocks. These are programmed using a specific set of instructions called HDL (Hardware Description Language) instructions. This language helps to abstract the design of the circuit and helps simplify the design process. Different instructions can be used to control the operation of the circuit and provide both the low-level configuration and operations of the circuit.
The HDL instructions used in the XCV2000E-8BG560C can be used to create a wide range of applications. These include controlling circuits, such as those used in robotics, as well as creating a wide range of digital and analog circuits. This flexibility makes it ideal for a variety of tasks, from low-level applications to complex algorithms.
One of the key advantages of the XCV2000E-8BG560C is its scalability. It can be used in a wide range of applications and can be programmed to a specific application, allowing engineers and designers to quickly adapt to changing requirements.
In conclusion, the XCV2000E-8BG560C is an ideal choice for a variety of applications. It is highly efficient, can be programmed to meet specific requirements, and offers highly scalable solutions. Therefore, it is an ideal choice for a wide range of applications, including robotics, digital and analog circuits and other embedded systems.
The specific data is subject to PDF, and the above content is for reference
Part Number | Manufacturer | Price | Quantity | Description |
---|
XCV200E-6BG352C | Xilinx Inc. | -- | 1000 | IC FPGA 260 I/O 352MBGA |
XCV2000E-6BG560C | Xilinx Inc. | -- | 1000 | IC FPGA 404 I/O 560MBGA |
XCV200-5BG256I | Xilinx Inc. | -- | 1000 | IC FPGA 180 I/O 256BGA |
XCV2000E-7BG560I | Xilinx Inc. | -- | 1000 | IC FPGA 404 I/O 560MBGA |
XCV200-5FG456I | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 284 I/O 456FBGA |
XCV2000E-8BG560C | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 404 I/O 560MBGA |
XCV200-5FG456C | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 284 I/O 456FBGA |
XCV2600E-6FG1156C | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 804 I/O 1156FBGA |
XCV2000E-7BG560C | Xilinx Inc. | -- | 1000 | IC FPGA 404 I/O 560MBGA |
XCV200-6PQ240C | Xilinx Inc. | -- | 1000 | IC FPGA 166 I/O 240QFP |
XCV200E-7BG352C | Xilinx Inc. | -- | 1000 | IC FPGA 260 I/O 352MBGA |
XCV200E-8CS144C | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 94 I/O 144CSBGA |
XCV2000E-6FG680I | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 512 I/O 680FBGA |
XCV200E-7FG456C | Xilinx Inc. | 36.11 $ | 20 | IC FPGA 284 I/O 456FBGA |
XCV200E-6FG456I | Xilinx Inc. | -- | 1000 | IC FPGA 284 I/O 456FBGA |
XCV200-4FG456C | Xilinx Inc. | -- | 1000 | IC FPGA 284 I/O 456FBGA |
XCV2000E-8FG680C | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 512 I/O 680FBGA |
XCV200E-6CS144I | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 94 I/O 144CSBGA |
XCV200-4BG352C | Xilinx Inc. | -- | 1000 | IC FPGA 260 I/O 352MBGA |
XCV200E-6CS144C | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 94 I/O 144CSBGA |
XCV200E-6PQ240C | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 158 I/O 240QFP |
XCV200-4FG256I | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 176 I/O 256FBGA |
XCV2000E-6FG1156I | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 804 I/O 1156FBGA |
XCV2000E-7FG1156C | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 804 I/O 1156FBGA |
XCV200E-7PQ240I | Xilinx Inc. | -- | 1000 | IC FPGA 158 I/O 240QFP |
XCV2600E-7FG1156C | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 804 I/O 1156FBGA |
XCV200-5BG352I | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 260 I/O 352MBGA |
XCV200-4BG256I | Xilinx Inc. | -- | 1000 | IC FPGA 180 I/O 256BGA |
XCV2000E-6FG680C | Xilinx Inc. | -- | 1000 | IC FPGA 512 I/O 680FBGA |
XCV2000E-8FG1156C | Xilinx Inc. | -- | 1000 | IC FPGA 804 I/O 1156FBGA |
XCV200E-6FG256I | Xilinx Inc. | -- | 1000 | IC FPGA 176 I/O 256FBGA |
XCV2600E-8FG1156C | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 804 I/O 1156FBGA |
XCV200-4PQ240I | Xilinx Inc. | -- | 1000 | IC FPGA 166 I/O 240QFP |
XCV200-5FG256I | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 176 I/O 256FBGA |
XCV2000E-7FG680I | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 512 I/O 680FBGA |
XCV2000E-7FG1156I | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 804 I/O 1156FBGA |
XCV200-4BG256C | Xilinx Inc. | -- | 1000 | IC FPGA 180 I/O 256BGA |
XCV2000E-6FG860C | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 660 I/O 860FBGA |
XCV2000E-6FG860I | Xilinx Inc. | 0.0 $ | 1000 | IC FPGA 660 I/O 860FBGA |
XCV200-5BG256C | Xilinx Inc. | -- | 1000 | IC FPGA 180 I/O 256BGA |
IC FPGA - Field Programmable Gate Array ...

IC FPGA - Field Programmable Gate Array ...

IC FPGA

IC FPGA

IC FPGA

IC FPGA 148 I/O 208QFP
